1,256 research outputs found

    Phase-separation phenomena in solutions of poly(2,6-dimethyl-1,4-phenylene oxide). III. Pulse-induced critical scattering of solutions in toluene

    Get PDF
    For the polymer-solvent system poly(phenylene oxide) in toluene the mechanism and kinetics of crystallization have been studied with the Pulse Induced Critical Scattering technique. It was found that after a delay-time the growth mechanism was diffusion controlled. The delay-time is thought to be connected with the nucleation of the crystallites and it disappeared in the seeded crystallizations studied. After incomplete melting of crystallites the first stages of growth resemble a condensation reaction

    Evolution of virulence: triggering host inflammation allows invading pathogens to exclude competitors.

    Get PDF
    Virulence is generally considered to benefit parasites by enhancing resource-transfer from host to pathogen. Here, we offer an alternative framework where virulent immune-provoking behaviours and enhanced immune resistance are joint tactics of invading pathogens to eliminate resident competitors (transferring resources from resident to invading pathogen). The pathogen wins by creating a novel immunological challenge to which it is already adapted. We analyse a general ecological model of 'proactive invasion' where invaders not adapted to a local environment can succeed by changing it to one where they are better adapted than residents. However, the two-trait nature of the 'proactive' strategy (provocation of, and adaptation to environmental change) presents an evolutionary conundrum, as neither trait alone is favoured in a homogenous host population. We show that this conundrum can be resolved by allowing for host heterogeneity. We relate our model to emerging empirical findings on immunological mediation of parasite competition

    Electronic damping of molecular motion at metal surfaces

    Full text link
    A method for the calculation of the damping rate due to electron-hole pair excitation for atomic and molecular motion at metal surfaces is presented. The theoretical basis is provided by Time Dependent Density Functional Theory (TDDFT) in the quasi-static limit and calculations are performed within a standard plane-wave, pseudopotential framework. The artificial periodicity introduced by using a super-cell geometry is removed to derive results for the motion of an isolated atom or molecule, rather than for the coherent motion of an ordered over-layer. The algorithm is implemented in parallel, distributed across both k{\bf k} and g{\bf g} space, and in a form compatible with the CASTEP code. Test results for the damping of the motion of hydrogen atoms above the Cu(111) surface are presented.Comment: 10 pages, 3 figure

    Toward an integrated approach to perception and action: conference report and future directions

    Get PDF
    This article was motivated by the conference entitled “Perception & Action – An Interdisciplinary Approach to Cognitive Systems Theory,” which took place September 14–16, 2010 at the Santa Fe Institute, NM, USA. The goal of the conference was to bring together an interdisciplinary group of neuroscientists, roboticists, and theorists to discuss the extent and implications of action–perception integration in the brain. The motivation for the conference was the realization that it is a widespread approach in biological, theoretical, and computational neuroscience to investigate sensory and motor function of the brain in isolation from one another, while at the same time, it is generally appreciated that sensory and motor processing cannot be fully separated. Our article summarizes the key findings of the conference, provides a hypothetical model that integrates the major themes and concepts presented at the conference, and concludes with a perspective on future challenges in the field

    New minimal weight representations for left-to-right window methods

    Get PDF
    Abstract. For an integer w ≥ 2, a radix 2 representation is called a width-w nonadjacent form (w-NAF, for short) if each nonzero digit is an odd integer with absolute value less than 2 w−1, and of any w consecutive digits, at most one is nonzero. In elliptic curve cryptography, the w-NAF window method is used to efficiently compute nP where n is an integer and P is an elliptic curve point. We introduce a new family of radix 2 representations which use the same digits as the w-NAF but have the advantage that they result in a window method which uses less memory. This memory savings results from the fact that these new representations can be deduced using a very simple left-to-right algorithm. Further, we show that like the w-NAF, these new representations have a minimal number of nonzero digits. 1 Window Methods An operation fundamental to elliptic curve cryptography is scalar multiplication; that is, computing nP for an integer, n, and an elliptic curve point, P. A number of different algorithms have been proposed to perform this operation efficiently (see Ch. 3 of [4] for a recent survey). A variety of these algorithms, known as window methods, use the approach described in Algorithm 1.1. For example, suppose D = {0, 1, 3, 5, 7}. Using this digit set, Algorithm 1.1 first computes and stores P, 3P, 5P and 7P. After a D-radix 2 representation of n is computed its digits are read from left to right by the “for ” loop and nP is computed using doubling and addition operations (and no subtractions). One way to compute a D-radix 2 representation of n is to slide a 3-digit window from right to left across the {0, 1}-radix 2 representation of n (see Section 4). Using negative digits takes advantage of the fact that subtracting an elliptic curve point can be done just as efficiently as adding it. Suppose now that D

    Decoherence in Bose-Einstein Condensates: towards Bigger and Better Schroedinger Cats

    Full text link
    We consider a quantum superposition of Bose-Einstein condensates in two immiscible internal states. A decoherence rate for the resulting Schroedinger cat is calculated and shown to be a significant threat to this macroscopic quantum superposition of BEC's. An experimental scenario is outlined where the decoherence rate due to the thermal cloud is dramatically reduced thanks to trap engineering and "symmetrization" of the environment which allow for the Schroedinger cat to be an approximate pointer states.Comment: 12 pages in RevTex; improved presentation; a new comment on decoherence-free pointer subspaces in BEC; accepted in Phys.Rev.
    corecore